Potential climate change impacts on temperate forest ecosystem processes

نویسندگان

  • Emily B. Peters
  • Kirk R. Wythers
  • Shuxia Zhang
  • John B. Bradford
  • Peter B. Reich
چکیده

Large changes in atmospheric CO2, temperature, and precipitation are predicted by 2100, yet the long-term consequences for carbon (C), water, and nitrogen (N) cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperatureto water-limited by the end

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems

This study compiles and summarizes the existing knowledge about observed and projected impacts of climate change on forests in Europe. Forests will have to adapt not only to changes in mean climate variables but also to increased variability with greater risk of extremeweather events, such as prolonged drought, storms and floods. Sensitivity, potential impacts, adaptive capacity, and vulnerabil...

متن کامل

ADAPTATION OF FORESTS AND PEOPLE TO CLIMATE CHANGE – A Global Assessment Report Prepared by the Global Forest Expert Panel on Adaptation of Forests to Climate Change

Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. This chapter reviews published studies of climate-forest relationships with emphasis on indications and mechanisms of change during recent decades. Effects of climate change on forests depend on ecosystem-specific factors including human activities, natural processes, and several dimension...

متن کامل

Climate change imposes phenological trade-offs on forest net primary productivity

Climate warming is expected to lengthen growing seasons of temperate forest ecosystems and increase gross primary productivity. Simultaneously, warming is expected to increase summer ecosystem respiration, which could offset gains accrued from longer growing seasons. These responses have been observed during anomalously warm years, but the role of future climate change on phenological trade-off...

متن کامل

Combined effect of atmospheric nitrogen deposition and climate change on temperate forest soil biogeochemistry: A modeling approach

Atmospheric N deposition is known to severely impact forest ecosystem functioning by influencing soil biogeochemistry and nutrient balance, and consequently tree growth and overall forest health and biodiversity. Moreover, because climate greatly influences soil processes, climate change and atmospheric N deposition must both be taken into account when analysing the evolution of forest ecosyste...

متن کامل

Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013